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Abstract
The lattice Green function at the origin of the simple cubic lattice with
anisotropic nearest-neighbour interactions is evaluated exactly in terms of a
product of two complete elliptic integrals of the first kind.

PACS numbers: 0230H, 0550

The lattice Green function

G(l,m, n;α,w) = 1

π3

∫ π

0

∫ π

0

∫ π

0

cos lθ1 cosmθ2 cos nθ3

w − cos θ1 − cos θ2 − α cos θ3
dθ1 dθ2 dθ3 (1)

where {l, m, n} denotes a set of integers, w = u + iv is a complex variable in the (u, v) plane
and α is a real parameter, is of frequent occurrence in many lattice statistical problems which
involve the simple cubic lattice with partially anisotropic nearest-neighbour interactions (Berlin
and Kac 1952, Berlin and Thomsen 1952, Duffin 1953, Montroll and Potts 1955, Isihara 1957,
Maradudin et al 1960, Montroll and Weiss 1965, Katsura et al 1971a). It will be assumed,
without loss of generality, that l � m � 0, n � 0 and 0 < α < ∞. In this Letter we
shall focus our attention on the exact evaluation of the lattice Green function at the origin
G(α,w) ≡ G(0, 0, 0;α,w).

It can be shown that G(α,w) defines a single-valued analytic function in the complex
(u, v) plane provided that a cut is made along the real axis from w = −2 − α to w = 2 + α,
where α > 0. In many applications one requires the limiting behaviour of G(α,w) as w
approaches the real u axis. It is convenient, therefore, to introduce the further definitions

G±(α, u) ≡ lim
ε→0+

G(α, u± iε) ≡ GR(α, u)∓ iGI(α, u) (2)

where −∞ < u < ∞ and ε is an infinitesimal positive number. When |u| � 2 + α the
imaginary part of G±(α, u) is always equal to zero. It should also be noted that GR(α, u)

and GI(α, u) are odd and even functions of u, respectively. We can use GI(α, u) to express
G(α,w) in the alternative form

G(α,w) =
∫ 2+α

−2−α

ρ(α, u)

w − u
du (3)
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where ρ(α, u) = (1/π)GI(α, u) is a density-of-states function (see Wolfram and Callaway
1963, Katsura et al 1971a).

Most of the known exact results for G(α,w) have been obtained for the isotropic case
α = 1. Watson (1939) proved that

G(1, 3) =
(

18 + 12
√

2 − 10
√

3 − 7
√

6
) [

2

π
K (k)

]2

(4)

where

k =
(

2 −
√

3
)(√

3 −
√

2
)

(5)

and K(k) denotes the complete elliptic integral of the first kind with a modulus k. An exact
formula for the general isotropic Green function G(1, w) was first derived by Joyce (1972,
1973). In particular, it was found that

wG(1, w) = (1 − η)
1
2

(
1 − 1

4
η

) 1
2
(

2

π

)2

K(k+)K(k−) (6)

where

k2
± = 1

2

[
1 ± η

√
1 − 1

4η − (1 − 1
2η)

√
1 − η

]
(7)

η = −16z
(√

1 − z +
√

1 − 9z
)−2

(8)

and z = 1/w2. This result can be used to calculate G(1, w) at any point in the (u, v) plane
provided that a cut is made along the real axis from w = −3 to +3. More recently, Joyce
(1994, 1998) has shown that the moduli k± = k±(η) in (7) are related by the cubic modular
transformation of order 3 (see Borwein and Borwein 1987). This remarkable connection
enables one to express the formula (6) in terms of the square [K(k−)]2.

Montroll (1956) extended the work of Watson (1939) and established an exact formula
for the anisotropic Green function G(α, 2 + α). His final result can be written as

G(α, 2 + α) =
√

2

α

(√
2
√

1 + α −
√

2 + α
) (

2

π

)2

K[k+(α)]K[k−(α)] (9)

where

k±(α) = 1

α

(√
2
√

1 + α −
√

2 + α
) (√

2 + α ±
√

2
)

(10)

and 0 < α < ∞. When α = 1 we can simplify (9) using the transformation formula

K[k+(1)] =
(

3
2

) 1
2
[1 + k−(1)]K [k−(1)]. (11)

In this manner, we recover the Watson formula (4). It appears that (9) is the only exact elliptic
function formula currently available in the literature for the Green function at the originG(α,w)
which is valid for arbitrary values of the anisotropy parameter α.

The main purpose in this Letter is to show that it is possible to express the general Green
function G(α,w) in terms of a product of two complete elliptic integrals of the first kind.
This new result enables one to calculate the value of G(α,w) for any w = u + iv in the cut
(u, v) plane and for any α ∈ (0,∞). Explicit elliptic integral formulae are also established for
GR(α, u) andGI(α, u) at the branch-point singularities u = α and |2 −α|, where α ∈ (0,∞).

In the first stage of the analysis we write G(α,w) ≡ G(0, 0, 0;α,w) in the alternative
form (Maradudin et al 1960)

G(α,w) =
∫ ∞

0
exp(−wt) I 2

0 (t) I0(αt) dt (12)
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where I0(t) denotes a modified Bessel function of the first kind and |w| � 2 + α with α > 0.
Next we derive a differential equation for G(α,w) by applying the methods developed by
Iwata (1979) to the integral (12). In this manner, we find that the function

yG(α, z) ≡ wG(α,w) (13)

where z = 1/w2, is a solution of the linear fourth-order differential equation

L4(y) ≡
4∑
j=0

fj (α, z)D4−j
z y = 0 (14)

where

f0(α, z) = 8z2(1 − α2z)
[
1 − (2 − α)2z

][
1 − (2 + α)2z

][
3 + 5(4 − α2)z

]
(15)

f1(α, z) = 20z
[
6 − 5(8 + 7α2)z− (224 + 52α2 − 75α4)z2

+ 3(4 − α2)(96 − 20α2 + 23α4)z3 − 23α2(4 − α2)3z4
]

(16)

f2(α, z) = [
96 − 4(544 + 233α2)z− 2(448 + 608α2 − 1365α4)z2

+ 4(4 − α2)(3040 − 974α2 + 811α4)z3 − 1350α2(4 − α2)3z4
]

(17)

f3(α, z) = [ − 72(11 + 3α2) + 6(736 + 8α2 + 177α4)z

+ 3(4 − α2)(1760 − 1076α2 + 589α4)z2 − 975α2(4 − α2)3z3
]

(18)

f4(α, z) = [
36(10 + α2 + α4) + 3(4 − α2)(40 − 104α2 + 31α4)z− 75α2(4 − α2)3z2

]
(19)

and Dz = d/dz. This differential equation is of the Fuchsian type with six regular singular
points at z = 0,

z1 = 1

(2 + α)2

z2 = 1

α2

z3 = 1

(2 − α)2

z4 = 3

5(α2 − 4)

(20)

and ∞. The singular point z4 is particularly interesting because the general solution of
L4(y) = 0 is analytic at z = z4. This unusual type of regular singular point is known as
an apparent (or accidental) singularity (Ince 1927, p 406).

It can be shown that any solution of L4(y) = 0 can be written in the product form

y(α, z) = 1

z

[ 3∏
i=1

(
1 − z

zi

)−1/2] (
1 − z

z5

)1/2

H1(α, z)H2(α, z) (21)

where z5 = 3/(4−α2) and {Hj(α, z) : j = 1, 2} are, respectively, solutions of the differential
equations [

D2
z + U+(α, z)

]
y = 0 (22)[

D2
z + U−(α, z)

]
y = 0. (23)
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The functions U±(α, z) in these second-order equations are given by

U±(α, z) = 7(2 + α2)

12z
+

1

4z2
+

α4(16 − 19α2)

64(1 − α2)(1 − α2z)
+

3α4

16(1 − α2z)2

+
(2 − α)4(8 + 32α − 23α2 − 5α3)

128α(1 − α)[1 − (2 − α)2z]
+

3(2 − α)4

16[1 − (2 − α)2z]2

− (2 + α)4(8 − 32α − 23α2 + 5α3)

128α(1 + α)[1 − (2 + α)2z]
+

3(2 + α)4

16[1 − (2 + α)2z]2

− (4 − α2)2(40 − 31α2)

192(1 − α2)[3 − (4 − α2)z]
− 3(4 − α2)2

8[3 − (4 − α2)z]2

± (α2 − 1) [3 + 5(4 − α2)z]

2z [3 − (4 − α2)z]2
√
(1 − α2z) [1 − (2 − α)2z] [1 − (2 + α)2z]

. (24)

It is necessary to introduce the extra singularity z5 in equation (21) in order to ensure that the
differential equations for {Hj(α, z) : j = 1, 2} are in normal form.

Next we define x = x±(α, z) to be transformation functions which reduce equations (22)
and (23), respectively, to the normal form of the Gauss hypergeometric equation[

D2
x +N(a, b; c; x)]y = 0 (25)

where

N(a, b; c; x) = 1

4x2(1 − x)2

{
c(2 − c)− 2[2ab + c(1 − a − b)]x + [1 − (a − b)2]x2

}
. (26)

It can be proved that the functions x±(α, z) must satisfy the non-linear equations

1

2
{x±, z} +

(
dx±
dz

)2

N(a, b; c; x±) = U±(α, z) (27)

respectively, where

{x, z} ≡ x ′′′(α, z)
x ′(α, z)

− 3

2

[
x ′′(α, z)
x ′(α, z)

]2

(28)

is the Schwarzian derivative of x(α, z) with respect to z. When a = 1
8 , b = 3

8 and c = 1
the Schwarzian equations (27) have algebraic solutions x±(α, z) which satisfy the simple
polynomial equation[
1 + (4 − α2)z

]4
x2 − 32z

[
2 − (16 + 5α2)z + 4(8 + 2α2 + α4)z2 − α2(4 − α2)2z3

]
x

+256α4z4 = 0. (29)

It follows from these results that the Green function can be expressed in the product form

wG(α,w) = [
1 + (4 − α2)z

]−1/2
2F1

(
1

8
,

3

8
; 1; x+

)
2F1

(
1

8
,

3

8
; 1; x−

)
(30)

where

x± ≡ x±(α, z) = 16z

[1 + (4 − α2)z]4

{[
1 − (4 + α2)z

]
± [

1 − (2 + α)2z
] 1

2 (1 − α2z)
1
2
[
1 − (2 − α)2z

] 1
2

}2
(31)

and z = 1/w2. The formula (30) has a very limited region of validity in the neighbourhood of
the origin z = 0. In particular, the result (30) cannot be used directly to calculate the correct
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value for the Montroll integral G(α, 2 + α). Fortunately, this difficulty can be overcome by
applying the relation (Erdélyi et al 1953, p 111)

2F1

(
1

8
,

3

8
; 1; x

)
=

(
1

2
+

1

2

√
1 − x

)−1/4 (
2

π

)
K(k) (32)

where

k2 = 1

2
− 1

2

(
1

2
+

1

2

√
1 − x

)−1/2

(33)

to equation (30).
In this manner, we obtain the required elliptic integral formula

wG(α,w) = 2√
1 − (2 − α)2z +

√
1 − (2 + α)2z

(
2

π

)2

K(k+)K(k−) (34)

where

k2
± ≡ k2

±(α, z) = 1

2
− 1

2

[√
1 − (2 − α)2z +

√
1 − (2 + α)2z

]−3

×
[√

1 + (2 − α)
√
z

√
1 − (2 + α)

√
z +

√
1 − (2 − α)

√
z

√
1 + (2 + α)

√
z

]

×
{

±16z +
√

1 − α2z

[√
1 + (2 − α)

√
z

√
1 + (2 + α)

√
z

+
√

1 − (2 − α)
√
z

√
1 − (2 + α)

√
z

]2
}

(35)

and z = 1/w2. If the variable z = 1/w2 is allowed to trace out any path P which lies in a
complex plane that is cut along the real axis from z = 1/(2 + α)2 to +∞, then it is found that
the functions k2

±(α, z)map the path P into two associated paths which do not cross the straight
line formed by the real interval [1,∞). From this result it follows that the basic formula (34)
should be valid for all values of w = u + iv which lie in the (u, v) plane, provided that a cut
is made along the real axis from w = −2 − α to 2 + α.

The formula (35) and the analytic continuations of the result (30) have been used to
investigate the behaviour of GR(α, u) and GI(α, u) in the neighbourhood of the branch-point
singularity at u = α. In particular, we have found that

GR(α, α) = 2

π2

(
1 + k2

1

)
K2(k1) (36)

GI(α, α) = 2

π2

(
1 + k2

1

)
K ′(k1)K(k1) (37)

provided that 0 < α � 1, where K ′(k1) denotes the complementary complete elliptic integral
of the first kind and

k1 ≡ k1(α) = 1

α2

(√
2

√
1 −

√
1 − α2 − α

) (
1 +

√
1 − α2

)
. (38)

When α = 1 these results are in agreement with the work of Katsura et al (1971b) and Joyce
(1973). For the more difficult case 1 < α < ∞ we obtain

GR(α, α) = 1

2π2

(
1 + k2

1

){
2K2(k1) + [K ′(k1)]

2
}

(39)

GI(α, α) = 1

2π2

(
1 + k2

1

){
4K ′(k1)K(k1)− 2iK2(k1) + i[K ′(k1)]

2
}
. (40)
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The modulus k1 = k1(α) in (39) and (40) can still be defined using equation (38), provided that
the radical

√
1 − α2 is replaced by its principal value +i

√
α2 − 1. It should be stressed that (39)

and (40) are real-valued functions of α, even though the modulus k1(α) is a complex-valued
function for α ∈ (1,∞).

A similar analysis has also been carried out in the neighbourhood of the branch-point
singularity at u = |2 − α|. In this manner, we find that

GR(α, α − 2) = 0 (41)

GI(α, α − 2) = − i

π2

(
1 + 2k2 − k2

2

)
K ′(k2)K(k2) (42)

where

k2 ≡ k2(α) = i

α

(√
2
√
α − 1 − √

α − 2
) (√

2 + i
√
α − 2

)
(43)

and α ∈ (2,∞). For the case 1 < α � 2 we have the alternative formulae

GR(α, 2 − α) = 1

2π2

(
1 + 2k2 − k2

2

){
2K ′(k2)K(k2) + 2iK2(k2)− i[K ′(k2)]

2
}

(44)

GI(α, 2 − α) = 1

2π2

(
1 + 2k2 − k2

2

){
[K ′(k2)]

2 + 2K2(k2)
}

(45)

where k2 = k2(α) is given by (43), with the radical
√
α − 2 replaced by its principal value

+i
√

2 − α. Finally, when 0 < α � 1 it is found that

GR(α, 2 − α) = 1

π2

(
1 + 2k2 − k2

2

)
K ′(k2)K(k2) (46)

GI(α, 2 − α) = 2

π2

(
1 + 2k2 − k2

2

)
K2(k2) (47)

where k2 = k2(α) is now defined by equation (43), with both radicals replaced by their principal
values.

We conclude with a brief discussion on the possibility of evaluating the Green function
G(l,m, n;α,w) at lattice points {l, m, n} which are not at the origin. For the isotropic case
α = 1 it is known from the work of Morita (1975) and Horiguchi and Morita (1975) that the
Joyce formula (6) can be used, at least in principle, to express G(l,m, n; 1, w) as a sum of
products of complete elliptic integrals of the first and second kinds for arbitrary values of l, m
and n. In order to achieve a similar result for the general anisotropic case α �= 1 it would be
necessary to have complete elliptic integral formulae for the Green functionsG(0, 0, 0;α,w)
and G(1, 0, 0;α,w). Unfortunately, the exact evaluation of the nearest-neighbour Green
function G(1, 0, 0;α,w) has not yet been done for α �= 1. However, it is possible to use the
methods developed by Iwata (1979) to evaluate the anisotropic Green function (1) at the lattice
points (1, 0, 1), (1, 1, 0) and (1, 1, 1) in terms of G(α,w) and its first three derivatives with
respect to w.

A detailed account of the various stages in the derivation of the basic formula (34) and a
full analysis of the analytic properties of G(α,w) will be published elsewhere.

We thank Dr John Zucker for his continued interest and encouragement in this work. We are
also grateful to one of the referees for helpful comments.
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